PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

 

  1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa, e che la lunghezza della proiezione dell'altro cateto sull'ipotenusa di 9 cm.

  2. [R. 20 cm.]

     

  3. In un triangolo rettangolo un cateto tre quinti dell'ipotenusa, e il, perimetro misura 75 dm. Calcolare l'area.
  4. [R. 234,3750 dm.]

  5. In un triangolo rettangolo l'ipotenusa cinque quarti di un cateto, e l'area 8,64 dm2. Calcolare la lunghezza del perimetro, dellaltezza relativa all'ipotenusa e le misure dei segmenti di perpendicolare condotti dal piede di tale altezza sui cateti. 

  6. [R. 14,4 dm. ; 2,88 dm.]

  7. Nel triangolo,rettangolo ABC le proiezioni BH ed HC dei cateti sull'ipotenusa stanno fra loro come 9 : 16 ; sapendo che il perimetro del triangolo misura 240 cm. , calcolare l'area del triangolo.
  8. [R. 2400 cm2.]

  9. In un triangolo rettangolo un cateto cinque terzi della sua proiezione sull'ipotenusa e questa misura 25,5 m. Calcolare la misura del perimetro, dell'altezza relativa all'ipotenusa e delle proiezioni dei cateti sull'ipotenusa.

  10. [R. 2p = 61,20 m.; h = 12,24 m.; proiezioni: 9,18 m. e 16,32 m.]

     

  11. In un triangolo rettangolo un cateto misura 153 cm. e l'ipotenusa venticinque noni della proiezione di detto cateto su di essa. Calcolare la misura del perimetro e della mediana relativa all'ipotenusa.

  12. [R. 2p = 612 cm. ; mediana = 127,5 cm.]

  13. Nel triangolo ABC, rettangolo in A, le proiezioni BH ed HC dei cateti sull'ipotenusa stanno fra loro come 9 : 16. Sapendo che il perimetro del triangolo misura 2400 cm., calcolarne l'area.

  14. [R. A = 240000 cm2.]

  15. In un triangolo rettangolo l'altezza relativa all'ipotenusa misura 12 m, e il rapporto dei cateti tre quarti; calcolare la misura del perimetro e l'area del triangolo.

  16. [R. 2 p = 60 m. ; area = 150 m2.]

  17. In un triangolo rettangolo le proiezioni dei cateti sull'ipotenusa misurano 9 cm. e 16 cm. Calcolare le misure dell'altezza relativa allipotenusa, del perimetro e l'area.

  18. [R. h = 12 cm. ; 2p = 60 cm. ; a = 150 cm2.]

  19. In un triangolo rettangolo un cateto cinque quarti della sua proiezione sull'ipotenusa, mentre la somma della met di questo cateto coi tre quinti dell'ipotenusa misura 75 cm. Calcolare le misure dei lati del triangolo, dell'altezza relativa all'ipotenusa e l'area.

  20. [R. 60 cm. ; 45 cm. ; 75 cm. ; h = 36 cm. ; a = 1350 cm2.]

  21. L'ipotenusa di un triangolo rettangolo misura 120 cm. e il triplo di un cateto uguale al quadruplo dell'altro. Calcolare le misure dei due cateti e dell'altezza relativa all'ipotenusa.

  22. [R. 72 cm. ; 96 cm. ; h = 57,6 cm.]

  23. In un triangolo rettangolo l'ipotenusa misura 20 cm. e la proiezione del cateto minore sull'ipotenusa 7,2 cm. Calcolare la misura de1 perimetro del triangolo e quella dell'altezza relativa all'ipotenusa.

  24. [R. 2 p = 48 cm. ; h = 9,6 cm.]

  25. L'ipotenusa di un triangolo rettangolo misura 40 cm. e un cateto 24 cm. Calcolare la misura del perimetro dei due triangoli che si ottengono conducendo l'altezza relativa all'ipotenusa.

  26. [R. 76,8 cm. e 57,6 cm.]

  27. In un triangolo rettangolo un cateto misura 12 cm. e la lunghezza dell'ipotenusa supera di 8 cm. quella dell'altro cateto. Calcolare la misura x del cateto incognito.

  28. [R. x = 5 cm.]

  29. Calcolare la misura dei tre lati di un triangolo rettangolo, sapendo che l'altezza relativa all'ipotenusa misura 12 m. e che i segmenti ch'essa determina sull'ipotenusa sono nel rapporto nove sedicesimi.

  30. [R. 15 m., 20 m., 25 m.]

  31. In un triangolo rettangolo le misure dei cateti differiscono fra loro di 7 cm. Sapendo che il cateto maggiore dodici quinti del minore, trovare la misura del perimetro del triangolo.

  32. [Indica con x la misura del cateto minore... ; R. 2 p = 30 cm.]

  33. In un triangolo rettangolo la misura dell'altezza relativa all'ipotenusa supera di 3 cm. la misura della proiezione del cateto minore sull'ipotenusa, mentre minore di 4 cm. rispetto alla misura della proiezione del cateto maggiore sull'ipotenusa. Calcolare la misura dell'altezza relativa all'ipotenusa.

  34. [Se x la misura cercata, hai : (x - 3): x = x : R. x = 12 cm.]

  35. La somma dei cateti di un triangolo rettangolo misura 17 cm. Sapendo che, se si prolunga un cateto di un segmento lungo 4 cm. e si diminuisce l'altro di un segmento lungo 2 cm., l'area aumenta di 15 cm2., qual' la misura dei cateti ?

  36. [Indicando con x la misura di un cateto, quella dell'altro 17-x, ecc.R. x = 12 cm.]

  37. L'altezza di un triangolo rettangolo relativa all'ipotenusa misura 36 cm., e i segmenti in cui essa divide l'ipotenusa stanno fra loro come 9 :16. Calcolare la misura del perimetro del triangolo.

  38. [R. 180 cm.]

  39. L'ipotenusa di un triangolo rettangolo misura 15 cm. e i cateti stanno fra loro come 3 : 4. Calcolare la misura del perimetro del triangolo, dell'altezza relativa all'ipotenusa e l'area.

  40. [R. 2 p = 36 cm. ; h = 7,2 cm. ; area = 54 cm2.]

  41. In un triangolo rettangolo la somma dei cateti misura 12,7 cm.; la differenza fra le aree dei quadrati costruiti su tali cateti di 123,19 cm2,. Calcolare la misura del perimetro del triangolo e la sua area.

  42. [R. 2 p = 24 cm. ; area = 8,40 cm2.]

  43. Nel triangolo ABC, rettangolo in A, le proiezioni BH ed HC dei cateti sull'ipotenusa stanno fra loro come 9 : 16 ; sapendo che la misura dell'ipotenusa 100 cm., calcolare quella del perimetro del triangolo.

  44. [R. 240 cm.]

  45. In un triangolo isoscele la base, che misura a, quattro terzi di ciascun lato uguale. Calcolare la misura dell'altezza relativa ai lati uguali.

  46. [R. .]

  47. In un triangolo isoscele l'altezza relativa al lati uguali misura e ogni lato uguale tre quarti della base. Calcolare la misura del perimetro.

  48. [R. 2 p = 5 a.]

  49. Il perimetro di un triangolo isoscele misura 98 cm. Sapendo che la misura della base supera di 23 cm. la misura di ciascun lato uguale, calcolare l'area del triangolo.

  50. [R. area = 168 cm2.]

  51. Il perimetro di un triangolo isoscele misura 160 m. La base due terzi di uno dei lati uguali. Trovare la misura della base e del lato.

  52. [R. 40 m. ; 60 m.]

  53. Nel triangolo ABC, isoscele sulla base BC, il perimetro sessantaquattro venticinquesimi di ciascuno dei lati uguali, e ognuno di questi supera di 11 cm. la base.Determinare l'area del triangolo.

  54. [R. area = 168 cm2.]

  55. In un triangolo isoscele la differenza fra uno dei lati uguali e l'altezza misura 10 cm. e la base lunga 60 cm. Calcolare le misure delle tre altezze del triangolo.

  56. [R. 40 cm. ; 48 cm. ; 48 cm.]

  57. In un triangolo isoscele l'altezza uguale a trenta undicesimi della base. Calcolare la misura del perimetro e l'area del triangolo, sapendo che l'altezza diminuita di un segmento lungo 50 cm. uguale a cinque undicesimi della base.

  58. [Poni: misura dell'altezza = x e quella della base = y ecc...R. 2p = 144cm. ; area = 660 cm2.]

  59. In un triangolo isoscele, il cui perimetro misura 36 cm., l'altezza lunga 12 cm. Calcolare la sua area.

  60. [Se x la misura di uno dei lati uguali e 2 y quella della base, hai: x2-y2= ... R. Area = 60 cm2.]

  61. In un triangolo isoscele il perimetro misura 108 cm., e l'altezza relativa alla base lunga 36 cm. Calcolare l'area del triangolo.

  62. [R. area = 540 cm*.]

  63. In un triangolo isoscele il lato cinque quarti dell'altezza, e la base ha per misura 126 a. Calcolare le misure dei lati e l'area. Calcolare anche le misure delle altezze relative ai lati uguali.

  64. [R. 105 a; 5292 a2; 100,8 a.]

  65. In un triangolo isoscele il lato cinque quarti dell'altezza relativa alla base, e il perimetro misura 164 a. Calcolare la misura dei lati e delle distanze del piede dell'altezza dai lati uguali.

  66. [R. 61,5 a; 51,25 a; ...]

  67. L'altezza di un triangolo equilatero misura h; calcolare la misura del perimetro del triangolo.

  68. [R. .]

  69. In un triangolo il rapporto di un lato all'altezza relativa ad esso 2. Prolungando di un segmento lungo 6 cm. tanto il lato quanto l'altezza, l'area del triangolo aumenta di 54 cm2. Trovare la misura dell'altezza.

  70. [R. 4 cm.]

  71. Un rettangolo ha l'area di 54000 cm2. e la base uguale ai cinque tredicesimi della diagonale ; trovare la misura del suo perimetro.

  72. [R. 1020 cm.]

  73. Un quadrato di lato lungo 90 cm. equivalente ad un trapezio. Sapendo che le basi del trapezio sono una i sette undicesimi dell'altra e che l'altezza dello stesso un ottavo del perimetro del quadrato, calcolare la misura delle basi del trapezio.

  74. [Se x la misura della base maggiore, hai: . ...R. b = 140 cm. B = 220 cm.]

  75. L'area di un rettangolo 2457,60 cm2. e l'altezza i cinque terzi della base. Trovare la misura delle due dimensioni e della diagonale.

  76. [R. h = 64 cm. , b = 38,4 cm. , d = 74,6 cm.]

  77. L'area di un rettangolo 4,32 cm2. e la base quattro quinti della diagonale. Trovare la misura della diagonale e delle due dimensioni.

  78. [R. d = 3 cm. ; b = 2,4 cm. ; h = 1,8 cm.]

  79. Il perimetro di un rettangolo misura 170 cm. e l'altezza cinque dodicesimi della base. Trovare l'area del rettangolo e la misura di una sua diagonale.

  80. [R. area = 1500 cm2. ; d = 65 cm.]

  81. In un rettangolo la base dodici quinti dell'altezza, e il perimetro misura 68a. Calcolare la lunghezza dei lati, della diagonale e l'area.

  82. [R. 10 a; 24 a; 26 a; 240 a2.]

  83. Calcolare l'area e la misura della diagonale di un rettangolo, la cui base tripla dell'altezza, sapendo che, se si aumenta la misura di ogni dimensione di a, l'area aumenta di p2.

  84. [R. .]

  85. Il perimetro di un rettangolo misura 98 cm. e il rapporto fra due lati nove quarantesimi. Calcolare l'area e la misura di una sua diagonale.

  86. [R. area = 360 cm2. ; d = 41 cm.]

  87. Calcolare la misura dei lati di un rettangolo sapendo che, se si aumenta l'altezza di un segmento lungo 3 m., e se si diminuisce la base di un segmento sempre lungo 3 m., l'area non cambia, mentre se si aumenta l'altezza di un segmento lungo 5 m. e si diminuisce la base di uno lungo 3 m., l'area aumenta di 16 m2.

  88. [R. 8 m. e 11 m.]

  89. Determinare l'area di un rettangolo sapendo che la misura della sua diagonale supera di 32 cm. quella dell'altezza, e che la differenza fra i venti quarantunesimi della diagonale stessa e i due terzi dell'altezza uguale a quattordici noni della stessa altezza.

  90. [R. area = 360 cm2]

  91. Due rettangoli sono equivalenti. La base del primo quattro terzi dell'altezza ; la misura della base del secondo supera di 160 cm. quella del primo, mentre la misura della sua altezza inferiore di 40 cm. rispetto a quella del primo. Calcolare l'area di uno di tali rettangoli.

  92. [R. area = 4800 cm2.]

  93. L'altezza di un rettangolo sette ventiquattresimi della base. Sapendo che la differenza fra i cinque settimi dell'altezza e un sesto della base misura 10 cm., calcolare l'area del rettangolo e la misura di una sua diagonale.

  94. [R. area = 16800 cm2 ; d = 250 cm.]

  95. Il rettangolo ABCD ha il perimetro lungo 6200 m. e il lato CD uguale a ventiquattro settimi del lato BC. Trovare la misura della distanza del vertice C dalla diagonale BD.

  96. [Poni = x ; hai R. distanza = 672 m.]

  97. Calcolare la misura del perimetro di un rombo date le lunghezze a e b delle diagonali.

  98. [R. ]

  99. In un rombo una diagonale tre quarti dell'altra e il lato misura 50 m. Calcolare la misura delle diagonali, l'area e la misura del raggio del cerchio inscritto.

  100. [R. 60 m., 80 m., 2400 m2., 24 m.]

  101. Un rombo ha il perimetro lungo 680 cm., e le diagonali che stanno fra loro come 8 :15. 1) Calcolare l'area del rombo e la misura del raggio del cerchio inscritto. 2) Tale rombo equivalente ad un trapezio isoscele di cui una, base misura 140 cm. e l'altezza 100 cm. Calcolare la lunghezza dell'altra base.

  102. [R. 1) a = 24000 cm2,; cm. ; 2) base = 340 cm.]

  103. In un rombo una diagonale tre quarti dell'altra e il perimetro misura 200 m. Calcolare la misura delle diagonali, l'area, la misura del raggio del cerchio inscritto e quella dei segmenti in cui il punto di tangenza di detto cerchio divide il lato.

  104. [R. 80 m. ; 60 m. ; 2400 m2. ; r = 24 m. ; 18 m. ; 32 m.]

  105. Nel rombo ABCD il lato cinque ottavi della diagonale AC, e la somma del perimetro con la stessa diagonale AC misura 140 cm. Dal vertice D si conduce l'altezza LH relativa al lato AB. Calcolare la misura dei segmenti e in cui tale altezza divide il lato AB.

  106. [Calcola , l'area del rombo, ecc... R. = 18 cm.; = 7 cm.]

  107. In un rombo tre quarti di una diagonale sono uguali all'altra diagonale,mentre la differenza fra la diagonale maggiore e i due terzi della minore misura 40 cm. Calcolare la misura del perimetro e l'area del rombo.

  108. [R. 2 p = 200 cm. ; area = 2400 cm2.]

  109. In un rombo una diagonale uguale, a un decimo dell'altra pi un segmento lungo 10 cm., mentre la somma di due undicesimi della prima diagonale con la met dell'altra misura 64 cm. Calcolare la misura del perimetro e l'area del rombo.

  110. [R. 2 p = 244 cm. ; area = 1320 cm2.]

  111. In un rombo la somma delle diagonali misura 98 cm. ; un quarto della misura della diagonale maggiore supera di 2 cm. la misura della diagonale minore. Trovare la lunghezza del perimetro del rombo.

  112. [R. 2 p = 164 cm.]

  113. In un rombo la somma di un lato con una diagonale misura 253 cm., mentre la differenza fra i tre quinti del lato e un quarto della stessa diagonale misura 9 cm. Calcolare l'area del rombo.

  114. [R. area = 2184 cm2.]

  115. In un trapezio rettangolo il lato obliquo cinque quarti dell'altezza e la differenza delle basi misura 315 a. Supponendo che la base minore sia un terzo della somma dell'altezza con il lato obliquo, calcolare le misure dei lati, l'area e le misure delle diagonali.

  116. [R. 420 a; 630 a; 525 a; 315 a; 198450 a2; 525 a; .]

  117. In un trapezio isoscele il lato obliquo cinque quarti dell'altezza, e la base minore due quinti del lato obliquo ; calcolare le misure dei lati e delle diagonali, sapendo che il suo perimetro misura 18 p.

  118. [R. ; ; ;.]

  119. La base maggiore di un trapezio rettangolo cinque terzi della minore e il doppio del lato obliquo. Calcolare la misura del perimetro del trapezio, sapendo che l'area 2400 cm2.

  120. [R. 2 p = 240 cm.]

  121. In un trapezio rettangolo l'altezza, che uguale alla base minore, misura , e il lato obliquo misura . Calcolare l'area.

  122. [R. area = 440 a2.]

  123. In un trapezio la base minore un quarto dell'altezza, i lati obliqui sono rispettivamente uno i venticinque sesti della base minore e l'altro venti terzi della stessa. Sapendo che il perimetro misura 116 cm., calcolare l'area del trapezio.

  124. [R. area = 612 cm2.]

  125. Un trapezio isoscele ha la base minore uguale a tre quinti della maggiore e la differenza delle due basi che misura 420 m. ; sapendo che ciascuno dei lati uguali misura 350 m , determinare l'area e la lunghezza delle diagonali.

  126. [R. a = 235200 m2.; d = m.]

  127. In un trapezio isoscele il lato obliquo cinque quarti dell'altezza, e la base minore due quinti del lato obliquo. Sapendo che il perimetro misura 20a, calcolare la lunghezza dei lati e delle diagonali.

  128. [R. 5a ; 2a ; 5a ; 8a; d = .]

  129. In un trapezio rettangolo la misura dell'altezza 108 cm. e quella delle diagonali 135 cm. e 180 cm. Calcolare l'area e la misura del perimetro.

  130. [R. 12150 cm2. ; 478,02 cm.]

  131. Trovare la misura delle basi e dell'altezza di un trapezio avente l'area di 864 cm2., sapendo che la base minore tre quinti della maggiore e l'altezza un terzo della somma delle basi.

  132. [R. B = 45 cm. ; b = 27 cm. ; altezza = 24 cm.]

  133. Il perimetro di un trapezio isoscele misura 124 cm. e ciascun lato obliquo lungo 30 cm. Determinare l'area e la misura di una diagonale del trapezio, sapendo che una sua base sette venticinquesimi dell'altra.

  134. [R. area= 768 cm2. ; d = 40 cm.]

  135. Trovare le misure delle dimensioni e l'area di un trapezio rettangolo formato da un quadrato e da un triangolo rettangolo la cui ipotenusa misura 29 m., sapendo che la misura della base maggiore supera di 21 m. quella dell'altezza.

  136. [R. h = 20 m. ; B = 41 m. ; b = 20 m. ; A = 610 m2 .]

  137. Trovare l'area di un trapezio rettangolo le cui basi misurano 324 m. e 572 m ., e la diagonale maggiore 715 m.

  138. [R. 192192 m2.]

  139. Un trapezio isoscele ha la base minore uguale ai tre quinti della maggiore, e il lato obliquo uguale ad un terzo della base maggiore. Sapendo che la misura dell'altezza 24 cm., calcolare l'area.

  140. [R. area = 1728 cm2.]

  141. La somma delle due basi di un trapezio rettangolo misura 79,2 m. e la loro differenza lunga 21,6 m. Sapendo che l'altezza uguale alla base minore, calcolare la misura del perimetro e l'area.

  142. [R. 2 p = 144 m. ; a = 1140,48 m2.]

  143. In un trapezio isoscele il lato obliquo la met della base minore e il perimetro misura 36 cm. Se dalla base maggiore si toglie il triplo del lato obliquo si ottiene un segmento lungo 1 cm. Calcolare l'area del trapezio.

  144. [R. area = 52 cm2.]

  145. Di un trapezio isoscele si sa che la somma delle basi misura 70a e l'area 700a2. Calcolare le misure delle basi, dell'altezza e dei lati non paralleli, sapendo che il perimetro misura 120a.

  146. [R. base magg. = 50a ; base min. = 20a ; h = 20a ; lato = 25a.]

  147. Un trapezio ha l'area di 7350 cm2. ; la base minore tre quarti della maggiore e l'altezza un terzo della somma delle basi. Calcolare la misura delle basi.

  148. [R. 120 cm. ; 90 cm.]

  149. La base maggiore di un trapezio rettangolo cinque terzi della minore e il doppio del lato obliquo. Calcolarne l'area, sapendo che il perimetro misura 480 cm.

  150. [R. area = 9600 cm2.]

  151. L'area di un trapezio rettangolo 1,50 m2. Trovare la misura del perimetro, sapendo che la base minore e l'altezza sono rispettivamente due terzi e quattro quinti della base maggiore.

  152. [R. 5 m.]

  153. In un trapezio la somma delle basi misura 55 m. e il rapporto di esse cinque sesti. Essendo la sua area 330 m2., calcolare la misura delle basi e dell'altezza.

  154. [R. 25 m. ; 30 m. ; 12 m.]

  155. L'area di un triangolo rettangolo a2, e un cateto gli emme ennesimi dell'altro. Determinare le misure del perimetro e dell'altezza del triangolo relativa all'ipotenusa.

  156. In un trapezio rettangolo, il lato obliquo cinque quarti dell'altezza e la base minore misura quattro terzi della somma del lato obliquo e dell'altezza. L'area del trapezio 54 cm2. Calcolare la misura dei lati e delle diagonali.

  157. [R. 15 cm. ; 5 cm. ; 12 cm. ; 4 cm. ; 15,5 cm. ; 12,6 cm.]

  158. Il perimetro di un trapezio isoscele misura 660 cm. ; la misura della base minore supera di 20 cm. la misura di uno dei lati uguali, e la misura della base maggiore supera di 120 cm. la misura di uno dei lati uguali. Trovare l'area dei trapezio.

  159. [R. Area = 24000 cm2.]

  160. Un trapezio rettangolo ha le basi che misurano 7,5 cm. e 4 cm. e l'altezza lunga 3 cm. Calcolare la misura della distanza della diagonale minore dal due vertici che non stanno su di essa.

  161. [R. 2,4 cm. ; 4,5 cm.]

  162. Determinare la lunghezza delle basi di un trapezio, sapendo che la maggiore tre mezzi della minore, che l'altezza misura 8 cm. e che il trapezio equivalente ad un quadrato di perimetro lungo 60 cm.

  163. [R. b = 22,5 cm.; B = 33,75 cm.]

  164. In un trapezio isoscele circoscritto ad un cerchio la base minore quattro noni della maggiore. Sapendo che il perimetro del trapezio misura 52 cm., calcolare le misure di ogni base, del lato obliquo e l'area.

  165. [Se x la misura della base maggiore, hai: 2(x+4/9x)=52 R. b = 8 cm. ;B = 18 cm. ; lato = 13 cm. area = 156 cm2.]

  166. Il perimetro di un trapezio isoscele misura 124 cm. Il lato obliquo quindici settimi della base minore, e questa sette venticinquesimi della base maggiore. Calcolare l'area del trapezio e la misura di una sua diagonale.

  167. [R. Area = 768 cm2. ; d = 40 cm.]

  168. Un trapezio isoscele ha l'area di 3072 cm2., e l'altezza lunga 48 cm. Calcolare la misura del perimetro del trapezio e quella di una sua diagonale, sapendo che la base maggiore venticinque settimi della minore.

  169. [R. 2 p = 248 cm. ; d = 80 cm.]

  170. In un trapezio isoscele la base minore undici ventunesimi della maggiore, e l'area di 192 cm2. Sapendo che la somma di due undicesimi della base minore con due terzi della maggiore misura 16 cm., calcolare la misura dell'altezza, del perimetro e di una diagonale del trapezio.

  171. [R. h = 12 cm. ; 2 p = 58 cm. ; d = 20 cm.]

  172. Nel trapezio isoscele ABCD l'altezza misura 360 cm. e la base AB venticinque settimi della base CD. Sapendo che la differenza fra due terzi della base maggiore e la met della minore misura 395 cm., calcolare la misura del perimetro, la lunghezza di una diagonale e l'area del trapezio. Verificare quindi che la diagonale AC perpendicolare al lato BC.

  173. [R. 2 p = 1860 cm. ; d = 600 cm. ; a = 172800 cm2. Verifica che ]

  174. Un trapezio isoscele ha la base minore che sette venticinquesimi della maggiore e l'altezza lunga 48 cm. Sapendo che la differenza delle basi misura 72 cm., calcolare la misura del perimetro del trapezio e quella del lato di un quadrato equivalente al triplo del trapezio.

  175. [R. 2 p = 248 cm. ; lato = 96 cm.]

  176. L'area di un trapezio di 1856 cm2. e l'altezza misura 32 cm. Sapendo che la base minore quattro venticinquesimi della maggiore, e che un lato obliquo misura 40 cm., calcolare la misura del perimetro del trapezio.

  177. [R. 2 p = 224 cm.]

  178. Calcolare l'area e la misura di una diagonale di un trapezio isoscele, che ha la base minore uguale a sette quindicesimi del lato obliquo e questo uguale a tre quinti della base maggiore, sapendo che il suo perimetro lungo 248 cm.

  179. [R. Area = 3072 cm2. ; d = 80 cm.]

  180. Un trapezio rettangolo ha la diagonale minore perpendicolare al lato obliquo e uguale a tre quarti dello stesso. Sapendo che la somma di un quarto del lato obliquo con due terzi della diagonale minore misura 6 cm., calcolare l'area del trapezio e la misura del suo perimetro.

  181. [R. a = 32,64 cm2. ; 2 p = 26,4 cm.]

  182. Un trapezio rettangolo ha il perimetro lungo 174 cm. e l'altezza uguale a quattro quinti del lato obliquo. Sapendo che la somma dell'altezza con lo stesso lato obliquo misura 108 cm., calcolare l'area del trapezio.

  183. [R. Area = 1584 cm2.]

  184. L'area di un trapezio rettangolo, la cui altezza misura 12 cm., di 210 cm.2 La sua base minore tre quarti della maggiore ; calcolare la lunghezza del perimetro di tale trapezio.

  185. [R. 2 p = 60 cm.]

  186. Il perimetro di un trapezio isoscele misura 260 cm. Sapendo che una diagonale bisettrice dell'angolo alla base maggiore, e che la met della base maggiore uguaglia gli undici decimi del lato obliquo, calcolare l'area del trapezio.

  187. [Osserva che il lato obliquo uguale alla... perch il triangolo ... R.Area = 3200 cm2.]

  188. In un trapezio la differenza delle basi misura 10 cm., un angolo alla base maggiore ampio 45, l'altezza misura 6 cm. e i tre quarti della base minore sono uguali a nove ventiduesimi della maggiore. Calcolare l'area del trapezio e la misura del suo perimetro.

  189. [R. a = 102 cm2.,; 2 p = 49,69 cm.]

  190. Due corde parallele di una circonferenza misurano 36 cm. e 48 cm. e la loro distanza 6 cm. Trovare la misura del raggio della circonferenza.

  191. [R. r = 30 cm.]

  192. In una circonferenza inscritto un quadrilatero avente per una diagonale un diametro. Sapendo che un lato sei quinti del raggio, che la somma di esso col diametro misura 64 cm. e che le diagonali sono perpendicolari fra loro, trovare la misura della diagonale minore.

  193. [R. d = 38i4 cui.]

  194. La distanza di una corda dal centro di un cerchio i tre ottavi della corda stessa; la differenza tra la lunghezza della corda e la misura della sua distanza dal centro misura 50 cm. Trovare la misura della corda e del raggio.

  195. [R. 80 cm. ; 50 cm.]

  196. Due circonferenze hanno per centri 0 ed 0' e sono tangenti esternamente in A. Sapendo che misura 1,4 cm. e che uguale a tre quarti di , calcolare la lunghezza del segmento di tangente comune alle due circonferenze, non passante per A, delimitato dal punti di contatto.

  197. [R. cm.]

  198. In una semicirconferenza di centro 0 e di diametro AB inscritto il trapezio isoscele ABCD. Sapendo che la distanza del lato AD dal centro 0 due quinti del diametro AB e che la somma di tale distanza con il raggio misura 45 cm., calcolare, la misura del perimetro e' l'area del trapezio.

  199. [Da 0 conduci OM perpendicolare ad AD e applica... al triangolo AMO... , trova BD, l'altezza, ecc... R. 2 p = 124 cm. area = 768 cm2.]

  200. Nella circonferenza di centro 0 e diametro , si conduce il diametro DC perpendicolare ad AB. Da un punto P dell'arco AC si conduce la tangente alla circonferenza che interseca il prolungamento di DC in E. Provare che si ha . 2) Supposto ampio 15, calcolare e la misura della distanza di P da CD.

  201. [ ; distanza = .]

  202. E dato il rettangolo ABCD. Si congiunga un generico punto P della diagonale BD, distinto da B e D, con A. La perpendicolare per P ad AP intersechi la retta BC in E e la retta CD in F. 1) Provare che il quadrilatero APFD inscrittibile. 2) Dimostrare che retto. 3) Sapendo che = 3 cm. e = 12 cm., calcolare .

  203. [Considera le circonferenze circoscritte a due particolari quadrangoli e la relazione fra gli angoli... = 6 cm.]

  204. Nel triangolo ABC, isoscele sulla base BC, la mediana relativa al lato AC lunga 15 cm., mentre l'altezza relativa alla base misura 18 cm. Calcolare: 1) la misura del perimetro e l'area del triangolo ; 2) la misura della distanza del baricentro dai lati.

  205. [R. 1) cm. ; area = 144 cm2. 2) 6 cm. e cm.]

  206. E data la circonferenza di diametro . Per A e B si conducano le perpendicolari m ed n ad AB. Dal punto P della circonferenza, diverso da A e B, si conduca la tangente alla stessa ; essa intersechi m in M, n in N. 1) Dimostrare che e che costante al variare di P sulla circonferenza. 2) Supposto , calcolare l'area del trapezio ABNM.

  207. [R. ]

  208. L'area del trapezio ABCD, isoscele sulla base AD, 160a2 e l'altezza lunga . 1) Calcolare la misura di una sua diagonale. 2) Provare che .

  209. [Diagonale = 20 a.]

  210. L'ipotenusa di un triangolo rettangolo misura . Sapendo che l'altezza ad essa relativa la divide in due parti che stanno fra loro come 9:16, calcolare la misura del perimetro del triangolo.

  211. [R. 2p = .]

  212. data la semicirconferenza di diametro AB = 2r ; essa viene divisa in tre parti uguali . Si prolunghi la corda AC del segmento CE=AC e la corda AD del segmento DI = AD. Si congiunga E con I e si conduca il segmento di perpendicolare IK alla retta AB. 1) Dimostrare che BI uguale ad AE e che EI parallelo ad AB. 2) Calcolare l'area di AIK.

  213. [R. 1) ... ; 2) .]

  214. Nel triangolo ABC, isoscele sulla base BC, l'altezza AH , due terzi di BC. Sapendo che il diametro della circonferenza circoscritta lungo 25 cm., calcolare la misura dei suo perimetro.

  215. [R. 2 p = 64 cm.]

  216. Il trapezio isoscele ABCD circoscritto, ad una semicirconferenza. Sapendo che il suo perimetro misura e che la base minore DC lunga, 1) Calcolare l'area del trapezio e la misura del raggio della semicirconferenza inscritta. 2) Calcolare la misura delle sue diagonali.

  217. [R. 1) area = 84a2; r = 4 2) .]

  218. Si consideri il triangolo ABC, isoscele sulla base AB. Con centro su AB, si descriva la circonferenza tangente al lati AC e CB. Condotta la corda DE tangente a tale circonferenza e parallela ad AB, si ottiene il trapezio ADEB. 1) Dimostrare che . 2) Sapendo che il raggio della circonferenza misura 4a e che , calcolare la misura del perimetro e l'area del trapezio.

  219. [1) Invero i triangoli... 2) 2p=36a; area = 38a2.]

  220. Nel trapezio ABCD la base maggiore BC misura 31 cm. e l'altezza AH il doppio della base minore. Sapendo che la proiezione ortogonale di D su DC M e che si hanno le relazioni e , calcolare la misura del, perimetro e l'area del trapezio.

  221. [poni = X. R. 2p=72 cm. ; area =222 cm2.]

  222. Nella circonferenza di centro 0 e raggio lungo data la corda . La corda parallela ad AC e posta da banda opposta alla stessa AC rispetto ad 0. 1) Provare che ACDE un trapezio isoscele, e calcolare la misura delle sue diagonali e l'area. 2) Provare che . 3) Provare che 0 equidistante da AC e CE.

  223. [R.1) Invero ... ; area = 276,48 a2. 2) Infatti sono angoli che ... 3) Basta osservare che ...]

  224. Nel trapezio isoscele ABCD la somma della base minore BC con lati obliqui misura 14a, mentre la base maggiore AD lunga 10a. Sapendo che l'altezza BH sta al lato obliquo AB come , 1) Calcolare l'area del trapezio. 2) Le bisettrici degli angoli e s'intersecano in P; calcolare la misura del perimetro e l'area del triangolo APD.

  225. [1) Area = ; 2) ;Area =.]

     

  226. Calcolare l'area di un triangolo isoscele il cui perimetro misura cm., sapendo che la base uguale a tre tredicesimi del lato aumentati di un segmento lungo cm.

  227. [R. 120 cm2.]

  228. Nel trapezio rettangolo ABCD l'altezza AD tre quinti della diagonale maggiore AC e dodici quinti della base minore AB. Sapendo che l'area del trapezio di 126 cm2., 1) Calcolare la misura delle due diagonali. 2) Di che natura il quadrilatero che si ottiene congiungendo i punti medi dei lati ? 3) Calcolare la misura del perimetro e l'area di tale quadrilatero.

  229. [R. 1) AC = 20 cm. ; BD = 13 cm. 2) un parallelogrammo, perch ... 3) 2p=33cm.; area=63cm2.]

  230. dato il triangolo ABC, isoscele sulla base BC. Centro in E, punto medio di BC, con raggio BH si descriva la circonferenza ; essa intersechi i lati AB ed AC ulteriormente in M ed N. Sapendo che cm. ed cm., 1)Calcolare la misura del perimetro e l'area del triangolo. 2) Dimostrare che BMNC un trapezio isoscele e di esso calcolare la misura del perimetro.

  231. [R. 1); area = 600 cm2. 2) cm.]

  232. Nel trapezio ABCD la differenza delle basi AD e BC misura 14 cm., mentre la lunghezza del lato AB tre quanti di quella del lato CD aumentata di 4 cm. Sapendo che la diagonale AC misura 20 cm., e che cm., 1) Calcolare la misura del perimetro e l'area del trapezio. 2) Verificare che AC perpendicolare a CD.

  233. [R. 1) 2 p = 64 cm. ; area = 216 cm2.]

  234. Determinare la misura della base e quella dell'altezza di un triangolo isoscele inscritto in un cerchio di raggio lungo r, sapendo che il suo lato quattro terzi del lato del quadrato inscritto nello stesso cerchio.

  235. [;.]

  236. Determinare la misura della base minore di un trapezio isoscele inscritto in una circonferenza di raggio lungo r, avente la base maggiore, coincidente col diametro, sapendo che esso equivalente al quadrato costruito sull'ipotenusa di un triangolo rettangolo isoscele avente i cateti uguali all'altezza del trapezio.

[R. ]

prof. Franco Pelini (dai testi del prof.Pompeo Nisini)

Home